
Performance Working Group

Grid Working Document: GWD-Perf-8-2

Category: Informational
Obsoletes: GWD-Perf- 1-1

Warren Smith

NASA Ames Research Center

Dan Gunter

Lawrence Berkeley National Laboratory

Darcy Quesnel

Argonne National Laboratory
June 6 2001

A Simple XML Producer-Consumer Protocol

1. Introduction

There are many different projects from government, academia, and industry that provide services

for delivering events in distributed environments. The problem with these event services is that

they are not general enough to support all uses and they speak different protocols so that they

cannot interoperate. We require such interoperability when we, for example, wish to analyze the

performance of an application in a distributed environment. Such an analysis might require

performance information from the application, computer systems, networks, and scientific

instruments. In this work we propose and evaluate a standard XML-based protocol for the

transmission of events in distributed systems.

One recent trend in government and academic research is the development and deployment of

computational grids [14]. Computational grids are large-scale distributed systems that typically

consist of high-performance compute, storage, and networking resources. Examples of such

computational grids are the DOE Science Grid [3], the NASA Information Power Grid (IPG) [8,

18], and the NSF Partnerships for Advanced Computing Infrastructure (PACIs) [9, 10]. The

major effort to deploy these grids is in the area of developing the software services to allow users

to execute applications on these large and diverse sets of resources. These services include

security, execution of remote applications, managing remote data, access to information about
resources and services, and so on. There are several toolkits for providing these services such as

Globus [4, 131, Legion [7, 151, and Condor [1, 191.

As part of these efforts to develop computational grids, the Global Grid Forum [5] is working to

standardize the protocols and APIs used by various grid services. This standardization will allow

interoperability between the client and server software of the toolklts that are providing the grid

services. The goal of the Performance Working Group [6] of the Grid Forum is to standardize

protocols and representations related to the storage and distribution of performance data. These

standard protocols and representations must support tasks such as profiling parallel applications,

monitoring the status of computers and networks, and monitoring the performance of services

provided by a computational grid.

This paper describes a proposed protocol and data representation for the exchange of events in a

distributed system. The protocol exchanges messages formatted in XML and it can be layered

atop any low-level communication protocol such as TCP or UDP. Further, we describe Java and

C++ implementations of this protocol and discuss their performance.

The next section will provide some further background information. Section 3 describes the main

communication patterns of our protocol. Section 4 describes how we represent events and related

information using XML. Section 5 describes our protocol and Section 6 discusses the

performance of two implementations of the protocol. Finally, an appendix provides the XML

Schema definition of our protocol and event information.

Smith, Gunter, and Quesnel Informational Page 1

GWD-Perf-8-2 A SimpleXML Producer-ConsumerProtocol June6 2001 ,

2. Background

The Grid Forum Performance Working Group has defined the basic architecture shown in Figure

1. This architecture consists of three components: a producer, a consumer, and a directory service.

A producer is something that "is producing performance data, each unit of which is called an

event. This producer can be an application profiler, a host monitor, or anything else. A consumer

is something that consumes or receives events. A consumer might be a tool to calculate how

much time is spent in each function of an application or a graphical interface showing the status

of a set of hosts. A directory service is a type of database that is used to store and retrieve

information about the producers and consumers, which is accessed using a protocol such as the

Lightweight Directory Access Protocol (LDAP) [17]. A producer may advertise a host monitor in

the directory service so that a consumer can search the directory service and find the monitor for

a certain host. The consumer can than contact that producer in order to receive events about that
host.

_dvertise available

of events

Figure 1. Grid Monitoring Architecture.

The Grid Forum Performance Working Group is defining the protocols and data representations

required by this architecture. This includes:

• A definition of the structure and organization of the data in the directory service,

• A definition of events and information related to events, and

• The protocol for communicating between producers and consumers of events.

In this paper we describe a proposed producer-consumer communication protocol and the event

information that is required by this protocol. Our protocol consists of a XML encoding of

messages and the state machines that describe when these messages are sent. We do not specify

the transport protocol on top of which our protocol will be layered. The transport protocol could

be UDP, TCP, HTTP, SSL, or any number of other protocols. We choose to use XML to

represent our data for several reasons. First, XML provides a textual representation of data that is

readable and therefore easier to debug. We could have selected a binary representation of our data

for improved performance, but a textual approach seems more appropriate at our current

experimental stage: Second, XML is self-describing and hierarchical, which makes it easy to
represent structured event data. Third, XML was selected instead of any other textual

representation because of the large and growing number of XML tools available and the growing

number of people familiar with XML.

Smith, Gunter, and Quesnel Informational Page 2

GWD-Perf-8-2 A SimpleXMLProducer-Consumer Protocol June 6 2001

Another approach we could have taken was to use SOAP [12] or XML-RPC [11] and thus avoid

explicit representation of the XML for each message. While this approach is a valid one, it has

several drawbacks. First, neither SOAP nor XML-RPC has low-level transport bindings: SOAP

has HTTP and SNMP bindings, and XML-RPC has only an HTTP binding. This introduces an

additional layer of inefficiency and, more importantly, makes it difficult to return a stream of

information to a consumer through a firewall. At some sites, inability to operate through a

firewall could in and of itself make the protocol useless. However, because of the convenience of

these higher-level tools, particularly for relatively performance-insensitive "control" messages,

we are considering a possible convergence in future versions of the protocol that solves this

problem.

Another approach would have been to use CORBA [20], for instance the CORBA Event Service.

This approach, while also valid, would impose a significant administrative and development

overhead if the target community did not already use CORBA, as is the case with the academic

and scientific communities. SNMP [21] was also considered, but was not used due to its inability

to handle streaming data efficiently.

3. Interactions

There are three major classes of producer-consumer interactions that our protocol must support.

As interactions with the directory service are outside the scope of this document, it is assumed

that in each interaction, producers and consumers are able to locate each other and determine

which events the other can produce or consume.

Figure 1 shows our first interaction. In the figure, a consumer subscribes to specific events from

the producer. Then the producer sends the events the consumer subscribed for to the consumer.

These events are sent out over a period of time until the producer or consumer (the consumer, in

the figure) ends the subscription. We call this interaction a consumer-initiated subscription or

simply consumer subscribe.

3: Unsubscribe

1 : Subs

Figure 1. Consumer-initiated subscription.

The second type of interaction is the producer-initiated subscription, or simply producer

subscribe. This interaction is shown in Figure. First, the producer contacts a consumer to request

a subscription. Then events are sent from the producer to the consumer until the subscription is

Smith, Gunter, and Quesnel Informational Page 3

GWD-Perf-8-2 A Simple XML Producer-Consumer Protocol June 6 2001

terminated. This type of interaction is useful, for example, when a producer sends events to an
archive. In this case, the archive is the consumer.

I. 3 Unsubscribe

1" S ubs_n

Figure 2. Producer-initiated subscription.

The third type of interaction is a simple request�reply that is shown in Figure 3. The figure shows
the consumer requesting information from a consumer, but a producer can also make a request of
a consumer. Our two previous interactions include request/reply interactions but our protocol
includes two instances of this interaction that stand on their own. First, there is a query
interaction. In this interaction the consumer queries a producer for a single event and the producer
replies with the event. Second, there is an event names interaction where a consumer requests a
list of the events available from a producer and the producer replies with the list.

k I

I

1: Request [2: Reply
i

I

Figure 3. Request/reply interaction

4. Events and Event Parameters

Before we describe our protocol, we first describe how we use XML to represent events and

event parameters. In this section and the following sections we provide example XML
representations of the data we are representing. Appendix A provides the XML Schema for our
data.

Smith, Gunter, and Quesnel Informational Page 4

GWD-Perf-8-2 A Simple XML Producer-Consumer Protocol June 6 2001

As mentioned before, events are the basic unit of information in our architecture. An event is a set

of <name, value> pairs where the values are typed and there is always a pair that contains the
time the event was generated. We represent this time using a time stamp that is a string formatted

according to the proposed Grid Forum standard format [16] This format is an extension of the
ISO 8601 time format [2]. Each element also has two optional attributes: units and accuracy. The

units attribute indicates the units associated with the element's value (e.g.: 'degrees', or 'bytes')

and the accuracy attribute indicates what range of likely "real" values are represented by the

element's value (e.g. '+/-5.0').

Associated with each event is a set of parameters that describe the information that can be passed

to a producer of events as part of a subscription or query. The event parameters consist of a set of
<name, value> pairs. Each element can have a units attribute associated with it. Examples of

event parameters are shown in Section 4.1 and Section 0.

4.1. CPU Load Event

The CPU load event is a simple event for containing the load information returned by the Unix

uptime command. We therefore use the event type "UptimeCPULoad" for this event to

differentiate it from other means of measuring CPU load. This event must contain the following
elements:

• TimeStamp. The time at which the CPU load event was generated.

• Loadl. The 1 minute CPU load reported by uptime.

• Load5. The 5 minute CPU load reported by uptime.

• Loadl5. The 15 minute CPU load reported by uptime.

• HostName. The name of the host the load measurement is made on.

Here is an example of such an event in our XML encoding:

<UptimeCPULoad xmlns= "http ://www. gridforum, org/Performance/Events ">
<Loadl>l .5</Loadl>
<Load5>l. 6</Load5>

<Loadl5>l. 3</Loadl 5>

<HostName> foo. has. nasa. gov</Hos tName>

<TimeStamp>2000-I I-09T21 :51 :45Z</TimeStamp>

</UptimeCPULoad>

Note that we define a namespace for all events defined by the Grid Forum Performance "Working

Group. When asking for a CPU load event, the following input parameters can be specified:

• Period. The number of seconds between each uptime event generation. This parameter is

only used when a subscription is performed. If this parameter is specified for a query, it is

ignored.

An example of the parameters that can be specified for this event is:

<Upt imeC PULoad

xmlns= "ht tp ://www. gridforum, org/Per formance/Event Parameters" >
<Period unit s="min" >600< /Period>

</Upt imeC PULoad>

Again note that we have defined a namespace for the parameters that can be specified when

requesting events defined by the Grid Forum Performance Working Group.

Smith, Gunter, and Quesnel Informational Page 5

GWD-Perf-8-2 A SimpleXML Producer-ConsumerProtocol June6 2001

4.2. Round Trip Time Event

The second event we define here is a network latency event with data produced by the Unix ping

command. We simply call this event "Ping". The event must contain the following elements:

• TimeStamp. The time at which the ping was performed.

• SourceHostName. The host name or IP address of the host that is performing the ping
command.

• TargetHostName. The host name or IP address of the host that the source host is pinging.
Note that this name or IP address can indicate I of several network interfaces on the

target host.

• RoundTripTime. The round-trip time reported by the ping command. The default units
for this value are milliseconds.

Here is an example of such an event in our XML encoding:

< Ping xmlns= "ht tp ://www. gridforum, org/Performance/Events" >

<SourceHostName> foo. nas. nasa. gov< /SourceHos tName>

<TargetHos tName>bar, ibl. gov</TargetHostName>

<RoundTripTime>7 < /RoundTr ipT ime>

<TimeStamp>2000-11-09T21 :53 :45Z</TimeStamp>

</Ping>

When asking for a ping event, the following input parameters can be specified:

• Period. The number of seconds between each uptime measurement and event generation.

This parameter is only used when a subscription is performed. If this parameter is

specified for a query, it is ignored. -:_

• TargetHostName. The name or IP address of the host that will be pinged. This parameter

is required.

An example of the parameters that can be specified when asking for a ping event are:

< Ping xmlns= "http ://www. gridforum, org/Per formance/EventParameters" >

<Period>600</Period>

<TargetHostName>bar. ibl. gov</TargetHostName>

</Ping>

5. Protocol

This section describes the XML protocol we use for communication between producers and

consumers. A formal definition of this protocol is provided in XML Schema in Appendix A. Our

protocol supports all of the interactions described in Section 3. We begin by discussing some

general formatting issues.

5.1. General Message Format

In general, each message consists of:

1. The number of bytes in the message. For our TCP binding, this is a 32-bit integer in network

byte order.

2. The XML tags that indicate the message type.

Smith, Gunter, and Quesnel Informational Page 6

GWD-Perf-8-2 A SimpleXML Producer-ConsumerProtocol June62001

3. Requestmessagesalwayshavea requester-uniquerequestID chosenby therequestor.This
requestID isanattributeof themessagetag

4. ReplymessagesalwayshavearequestID,whichmatchestherequestID oftherequestthatis
beingrepliedto.

5. Replymessagesalwayshavea returncodeandmayhavea detailedreturnmessage.The
Returnelementindicatesif anoperationwassuccessful(Success)orafailure(Failure).These

return codes will most likely be expanded later to contain more detailed error codes. The

ReturnDetail element contains a text message that contains detailed user-readable information

about the status of a request.

6. The message-specific data inside the XML tags that identify the message.

We define three XML name spaces for use in our protocol. The name space

http://www.gridforum.org/Performance/Events contains the events defined by the Grid Forum

Performance Working Group, the name space

http://www.gridforum.org/Performance/EventParameters contains the parameters defined by the

working group that can be specified when asking for an event or events, and the name space

http://www.gridforum.org/Performance/Protocol contains the elements which make up the

messages of our protocol. Further, we allow any group to define events and event parameters in

their own name spaces for use with our protocol.

5.2. Consumer-Initiated Subscription

When a consumer wants to receive a stream of events from a producer, it subscribes to the

producer for the events. After a subscription successfully takes place, events are sent from the

producer to the consumer until either the consumer or producer unsubscribes. There are five

messages in this process and these messages and the associated state machine are shown in Figure
3. If there is no label for a state transition, we assume that the transition always occurs if no errors

have occurred during the actions taken in a state. To make our state machines easier to read, we

do not show a failure state that is entered if any operation fails.

Smith, Gunter, and Quesnel Informational Page 7

GWD-Perf-8-2 A SimpleXMLProducer-ConsumerProtocol June6 2001

Consumer Producer

Dram

i uns e

unsubscribe _ \ ''.,, request ,, " " / _ unsubscribe

unsubscribe

unsubscribe reply
/v'-

Figure 3. The state machine and messages for a consumer-initiated subscription.

5.2.1. Subscribe Request

The subscribe request message consists of:

• A consumer-unique request ID that the reply to this message will refer to (required).

• A consumer-unique subscription ID that the consumer will use to identify the

subscription (required).

• Event parameters element (required).

• Any input parameters needed to generate events (optional).

Here are two examples of subscribe request messages:

<SubscribeRequest xmlns= "http : //www. gridforum, org/Performance/Protocol"

request ID=" 1 ">

<SubscriptionID>l 2< / SubscriptionID>

<Upt imeC PULoad

xmlns= "http : //www. gridforum, org/Per formance/Event Parameters ">

< Period> 6 0 0< / Period>

< / Up t imeC PULoad>

< / SubscribeReques t >

Smith, Gunter, and Quesnel Informational Page 8

GWD-Perf-8-2 A SimpleXML Producer-ConsumerProtocol June6 2001

<SubscribeRequest xmlns= "http : //www. gridforum, org/Performance/Protocol"

requestID=" 2">

<Subscript ionID> 13 </Subsc riDt ionID>

<Ping xmlns= "http://www.gridforum.org/performance/EventParameters ">

<Period>300</Period>

<TargetHos tName>bar, ibl. gov</TargetHostName>

</Ping>

< / SubscribeReque s t>

In the future, we will add an optional event filter to subscription request messages. The filter will

select events from the entire set of events generated by the producer for the subscription. For

example, a filter may indicate that only CPU load events with a l-minute and 5-minute load

average greater than or equal to 5.0 should be sent. There are many possibilities for the filter

language, but none is clearly superior. One standard filter that is in widespread use is the LDAP

filter language [17]. This language provides a logical expression of what in LDAP are called

"attribute" values, but what we would call element values. The syntax is a prefix notation using

only a few operators (and, or, not, greater than or equal to, less than or equal to, equals,

approximately equal) and a wildcard character for partial string matching. A filter string for an

UptimeCPULoadEvent that would implement the CPU load criteria mentioned above would be:

(J (Loadl >= 5) (Load5 >= 5)).

5.2.2. Subscribe Reply

The subscribe reply message consists of:

• The requestlD (required) of the request that this message is in reply to.

• Return (required). Success means the request the reply is for was successfully completed,

Failure means the request failed. Other return codes to represent more detailed failures

will most likely be added in the future.

• ReturnDetail (optional). Text giving further information about the successful or
unsuccessful subscribe.

• An optional producer-unique SubscriptionlD that identifies the subscription that was

successfully made by the consumer (if one was). The subscription ID should be present if

the subscription was successful and should not be present if the subscription was not

successful. The SubscriptionlD can be used to unsubscribe later.

Two examples of subscribe reply messages are:

<SubscribeReply xmlns= "http : //www. gridforum, org/Performance/Protocol"

requestID=" i">

<Return>Failure</Return>

<ReturnDetail>The period specified is too small.

< / ReturnDe tai 1 >

< / SubscribeReply>

<SubscribeReply xmlns="http://www.gridforum.org/Performance/Protocol"

requestID="2">

<Return>Success</Return>

<SubscriptionID>15</SubscriptionID>

</SubscribeReply>

5.2.3. Unsubscribe Request

Unsubscribe requests can originate at either the producer or consumer. In either case, the message
has the same format. The unsubscribe request message consists of:

Smith, Gunter, and Quesnel Informational Page 9

GWD-Perf-8-2 A SimpleXML Producer-ConsumerProtocol June 6 2001

The requestlD (required) of this request so that the reply to this request can be identified.

The SubscriptionID (required) generated by the message target (i.e. producer if the

originator is the consumer, consumer if the originator is the producer) that identifies the

subscriptionthatisbeingterminated.

An example ofan unsubscriberequest messageis:

<UnsubscribeRequest

xmlns="http://www.gridforum.org/Performance/Protocol"

<SubscriptionID>1234</SubscriptionID>

</UnsubscribeRequest>

requestID="9">

5.2.4. Unsubscribe Reply

The unsubscribe reply message consists of:

• The requ_tlD (required) of the request that this message is in reply to.

* R_um (required). Success means the request the reply is for was succ_s_lly compl_ed,

Failure means the request _iled. Other non-zero return codes to represent more detailed

ilur will most likely be added in the _ture.

• ReturnDetail (optional). This elements provides text giving _her information about the
success_l or unsuccess_! unsubscfibe.

Examples of unsubscribe reply message are:

<UnsubscribeReply xmlns="http://www.gridforum.org/Performance/Protocol"

requestID="9">
<Return>Success</Return>

</UnsubscribeReply>

<UnsubscribeReply xmlns="http://www.gridforum.org/Performance/Protocol"

requestID="9">
<Return>Failure</Return>

<ReturnDetail>Unknown subscription ID.</ReturnDetail>

</UnsubscribeReply>

5.2.5. Event

An event message is sent from the producer to the consumer after a subscription is initiateds. An

event message consists of:

• The subscription ID (required) that was generated by the consumer which identifies

which subscription the event belongs to.

• The event (optional) in the format described in Section 4. The event should be present if

an error is not reported.

• Error (optional), indicating that an error occurred while generating the event.

• ErrorDetail (optional) providing further information about an error that occurred while

generating an event. This element should only occur in conjunction with the Error
element.

Example event messages are shown below. Note that the event elements are in the gfperf-event

namespace.

<Event xmlns= "http ://www. gridforum, org/Performance/Protocol"

subscriptionID="1234">

<UptimeCPULoad xmlns= "http ://www. gridforum, org/Performance/Events" >

Smith, Gunter, and Quesnel Informational Page 10

GWD-Perf-8-2 A Simple XML Producer-Consumer Protocol June 6 2001

<Loadl>l.5</Loadl>

<Load5>l.6</Load5>

<Loadl5>l.3</LoadlS>

<TimeStamp>2000hll-09T21:51:45Z</TimeStamp>

</UptimeCPULoad>

</Event>

<Event xmlns="http://www.gridforum.org/Performance/Protocol"

subscriptionID="1234">

<UptimeCPULoad xmlns="http://www.gridforum.org/Performance/Events">

<Error>Authorization</Error>

<ErrorDetail>You are no longer authorized to receive this

information.</ErrorDetail>

</UptimeCPULoad>

</Event>

<Event xmlns='http://www.gridforum.org/Performance/Protocol"

subscriptionID="1235">

<Ping xmlns="http://www.gridforum.org/Performance/Events">

<SourceHostName>foo.nas.nasa.gov</SourceHostName>

<TargetHostName>bar.lbl.gov</TargetHostName>

<RoundTripTime>7</RoundTripTime>

<TimeStamp>2000-11-09T21:53:45Z</TimeStamp>

</Ping>

</Event>

5.3. Producer-Initiated Subscription

There are cases where a producer of events may want to initiate a subscription. A common case is
when a producer wants to archive the events it is generating. The state machine and messages for

this type of interaction are shown in Figure 4. The request and reply messages used during a
producer-initiated subscription are identical to those used for a consumer-initiated subscription.
The only difference is that the producer is requesting the subscription instead of the consumer.

Smith, Gunter, and Quesnel Informational Page 11

GWD-Perf-8-2 A Simple XML Producer-Consumer Protocol June 6 2001

Consumer Producer

s.ubscri_ r eq2est -

_ subscribe re_ply

i uns e

unsu rit \ /

unsubscribe

unsubscribe reply

Figure 4. The state machine and messages for a producer-initiated subscription.

5.4. Querying for an Event

Often a consumer will want just 1 event from a producer. Instead of having a consumer subscribe,

receive 1 event, and then unsubscribe, we allow a consumer to query a producer for an event. The

state machine and messages for this example of the request/reply interaction are shown in Figure

5. A query consists of a query request message that a consumer sends to the producer and a query

reply message that the producer sends to the consumer in response to the query request message.

The query reply includes the event that was requested.

Smith, Gunter, and Quesnei Informational Page 12

GWD-Perf-8-2 A SimpleXMLProducer-ConsumerProtocol June62001

Consumer Producer

_ qu_ery request

query reply

Figure 5. The state machine and messages for a query•

5.4.1. Query Request

The query request message is very similar to the consumer subscribe request message and
consists of:

• A request ID (required).

• Event parameters element (required).

• Any input parameters needed to generate events (optional).

Here are two examples of QueryRequest messages:

<QueryRequest xmlns= "http : //www. gridforum, org/Performance/Protocol"

request ID=" 15 ">

< Up t imeC PULoad

xmlns= "ht tp ://www. gridforum, org/Performance/Event Parameters" / >

</QueryRequest >

<QueryRequest xmlns= "http : //www. gridforum, org/Performance/Protocol"

request ID=" 20" >

<Ping xmlns="http : //www. gridforum, org/Per formance/EventParameters" >

<TargetHostName>bar. ibl. gov</TargetHostName>

</Ping>

</QueryReques t>

5.4.2. Query keply

The query reply messages are similar to the event messages and consist of:

• A request ID (required).

• Return (required).

• ReturnDetail (optional).
• The event data in the format described in Section 4.

Example query reply messages are:

<QueryReply xmlns= "http : //www. gridforum, org/Performance/Protocol"

requestID=" 15" >

<Return>Success</Return>

<UptimeCPULoadEvent

_alns = "http : //www. gridforum, org/Performance/Events" >

<Loadl>l. 5</Loadl>

<Load5>l. 6</Load5>

Smith, Gunter, and Quesnel Informational Page 13

GWD-Perf-8-2 A Simple XML Producer-Consumer Protocol

<Loadl5>l.3</Loadl5>

<TimeStamp>2000-11-09T21:51:45Z</TimeStamp>

</UptimeCPULoadEvent>

</QueryReply>

June 6 2001

• "/

<QueryReply xmlns="http://www.gridforum.org/Performance/Protocol"

requestID="20">

<Return>Success</Return>

<PingEvent xmlns="http://www.gridforum.org/Performance/Events">

<SourceHostName>foo.nas.nasa.gov</SourceHostName>

<TargetHostName>bar.lbl.gov</gfperf-event:TargetHostName>

<gfperf-event:RoundTripTime>7</RoundTripTime>

<TimeStamp>2000-11-09T21:53:45Z </TimeStamp>

</PingEvent>

</QueryReply>

5.5. Requesting Available Events

Even though our architecture in Figure I shows a directory service that will be used to contain

information on the events that are available from a producer it is also convenient to be able to

obtain this information from producers directly. This message sequence, shown in Figure 6, is an

example of a request/reply interaction.

Consumer Producer

available events

request_ -

,l
available events

reply

Figure 6. The state machine and messages for requesting available events

5.5.1. Event Names Request

The available events request message is very simple and only contains a request ID. Here is an

example EventNamesRequestMessage:

<EventNamesReques t

xmlns= "http ://www. gridforum, org/Performance/Protocol" requestID=" 15"/>

5.5.2. Event Names Reply

The event names reply messages consist of:

• A request ID (required).

• Return (required).

• ReturnDetail (optional).

Smith, Gunter, and Quesnel Informational Page 14

GWD-Perf-8-2 A Simple XML Producer-Consumer Protocol June 6 2001

• One or more Event elements the value of which is the name of the event. This element

also has two attributes:

o The eventns atu'ibute specifies the name space of the event.

o The paramns attribute specifies the name space of the parameters to the event.

An example event names reply messages is shown below.

<EventNamesReply xmlns= "http : //www. gridforum, org/Performance/Protocol"

requestID=" 15">

< Re turn>Succes s< / Re turn>

<Event eventns= "ht tp : //www. gridforum, org/Per formance/Events"

paramns= "ht tp ://www. gridforum, org/Performance/Event Parameters ">

UptimeCPULoad

< / Even t >

< / Even tName s Rep I y>

6. Performance

In this section we present performance results for two independent implementations of our

protocol. One implementation uses Java and the Xerces XML parser. The other implementation

uses C++ and the expat XML parser. We examined the performance of these implementations

using a 933 MHz Pentium III system running RedHat Linux 7.1 with JDK 1.3. We found that the

C++ implementation is significantly faster. It can decode 4,300 uptime cpu load event messages a
second to C++ objects and encode 28,100 event messages a second from C++ objects. The Java

implementation can decode 600 event messages a second and encode 21,900 event messages a
second.

7. Conclusions and Future Work

This document describes an XML-based protocol for the transmission of performance events in a

distributed environment. The protocol we describe is a proposed standard in the Performance

Working Group of the Grid Forum. The purpose of this protocol is to address the problem of

providing performance information in a standard way so that different tools can provide and use

such information. We require such interoperability in a computational grid when we wish to

analyze the performance of an application that uses several different resources.

We constructed two independent implementations of this protocol that interoperate. One

implementation is written using Java, and the other using C++. We found that the C++

implementation can decode messages significantly faster than the Java implementation but the
encoding time is similar.

References

[1] "Condor High Throughput Computing," http://www.cs.wisc.edu/condor/.

[2] "Data elements and interchange formats - Information interchange - Representation of

dates and times," International Organization for Standardization ISO 8601, 1998.

[3] "The DOE Science Grid," http://www-itg.lbl.gov/Grid.

[4] "The Globus Project," http://www.globus.org.

[5] "Grid Forum." http://www.gridforum.org.

[6] "Grid Forum Performance Working Group," http://www-didc.lbl.gov/GridPerf/.

[7] "The Legion Project," http://www.cs.virginia.edu/-!egion/.

[8] "The NASA Information Power Grid," http://www.ipg.nasa.gov.

Smith, Gunter, and Quesnel Informational Page 15

GWD-Perf-8-2 A Simple XML Producer-Consumer Protocol June 6 200i

[9] "The National Computational Science Alliance,"

http://www.ncsa.uiuc.edu/access/index.alliance.html.

[10] "The National Partnership for Advanced Computing Infrastructure,"

http://www.npaci.edu/.
[11 ! "XML-RPC Home Page,;' http:Hwww.xmlrpc.com.

[121 D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte,

and D. Winer, "Simple Object Access Protocol (SOAP) 1.1," The World Wide Web
Consortium 2000.

[131 I. Foster and C. Kesselman, "Globus: A Metacomputing Infrastructure Toolkit."

International Journal of Supercomputing Applications, vol. 11, pp. 115-128, 1997.

[141 I. Foster and C. Kesselman, "The Grid: Blueprint for a New Computing Infrastructure,".:

Morgan Kauffmann, 1999.

[15] A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. R. Jr., "Legion: The Next Logical

Step Toward A Nationwide Virtual Computer," Department of Computer Science,

University of Virginia CS-94-21, June, 1994 1994.

[16] D. Gunter and B. Tierney, "A Standard Timestamp for Grid Computing." In Proceedings of

the Global Grid Forum 1, 2001.

[17l T. Howes, M. Smith, and G. Good, Understanding and Deploying LDAP Directory

Services: MacMillan Technical Publishing, 1999.

[18] W. Johnson, D. Gannon, and B. Nitzberg, "Grids as Production Computing Environments:

The Engineering Aspects of NASA's Information Power Grid." In Proceedings of the 8th
IEEE International Symposium on High Performance Distributed Computing, 1999.

[19] M. Litzkow and M. Livny, "Experience with the Condor Distributed Batch System." In

Proceedings of the IEEE Workshop on Experimental Distributed Systems, 1990.

[20] A. Pope, The CORBA Reference Guide. Reading, MA: Addison-Wesley, 1998.

[21] W. Stallings, SNMP, SNMPv2, and CMIP: The Practical Guide to Network-Management

Standards. Reading, Massachusetts: Addison-Wesley, 1993. _"

A. Appendix

This appendix provides the XML Schema representation of the information we have described in

this paper. First, we provide the schema for events, including two example events. Second, we

provide the schema for event parameters, including two example event parameter sets. Third, we

provide the schema for our protocol.

A.1. Event Schema

<?xmlversion='1.0"encoding="OTF-8"?>
<t-- editedwithXML Spy v3.5 NT (http://www.xmlspy.com)by Jerry C Yan (NASA Ames ResearchCenter) -->
<xsd:schematargetNamespace="http:/Iwww,gr'xJforum.orglPerformance/events"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"xmlns:gfperf-
event="http://www.gridforum.orglPerformancelevents*xmlns:gfperf="http:/Iwww.gridforum.orglPerformance"
elementFormDefault="qualified"attributeFormDefault=*unqualified'>

<xsd:importnamespace="http:llwww.gridforum.orglPerformance"
schemaLocation='D:\user\wwsmith\GridForumkXMLSchema\base-ns,xsd"/>

<xsd:complexTypename='EventType" abstract="true"final="#aU'>
<xsd:annotation>

<xsd:documentation>The basic event schema.</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:elementname='TimeStamp"type="gfperf:string'/>
</xsd:sequence>

</xsd:complexType>

Smith, Gunter, and Quesnel Informational Page 16

GWD-Perf-8-2 A Simple XML Producer-Consumer Protocol June 6 2001

<xsd:element name=-"Event" type="gfperf-event:EventType" abstract="true">
<xsd:annotation>

<xsd:documentation>The basic event element that should be extended.</xsd:documentation>
_/xsd:annotation>

</xsd:element>

<xsd:element name="UptimeCPULoad" substitutionGroup="gfperf-event:Event">
<xsd:annotation>

<xsd:documentation>An event containing CPU load information obtained from the Unix uptime
command. </xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="gfperf-event: EventType">
<xsd:sequence>

<xsd:element name="Loadl" type="gfperf:float"/>
<xsd:element name="Load5" type="gfperf:float'/>
<xsd:elernent name="Load15" type="gfperf:float"/>
<xsd:element name="HestName" type="gfperf:string"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd: element>

<xsd:element name="Ping" substitutionGroup="gfped-event:Event">
<xsd:annotation>

<xsd:documentatien>An event containing the round trip time between hosts measured by the Unix
ping.</xsd:dccumentation >

<Jxsd:annotation>

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base='gfperf-event: EventType'>
<xsd:sequence>

<xsd:element name="SourceHostName" type="xsd:string"/>
<xsd:element name="TargetHostName" type="xsd:string'/>
<xsd:element name="RoundTripTime" type='gfperf:float"/>

</xsd:sequence>
</xsd:extension>

</xsd:cornplexContent>
</xsd:complexType>

</xsd:element>
</xsd:schema>

A.2. Event Parameters Schema

<?xml version="1.0" encoding='UTF-8"?>
<!-- edited with XML Spy v3.5 NT (http://www.xmlspy.com) by Warren Smith (NASA Ames Research Center) -->
<xsd:schema targetNamespac e="http:i/www.gridforum.org/Performance/parameters"
xmlns:xsd="http://www.w3.orgl2000110/XMLSchema" xmlns:gfperf-
param='http://www.gridfor um.org/Performance/parameters" element FormDefault='qualified"
attributeFormDefault="unq ualified">

<xsd:complexType name="Event ParametersType'>
<xsd:annotation>

<xsd:documentation>The basic input parameters to a producer when requesting
event(s).</xsd:doc umentation>

</xsd:annotation>
<xsd:sequence>

<xsd:element name="Period" minOccurs="0">
<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base=-"xsd: integer'>
<xsd:attribute name='units" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

Smith, Gunter, and Quesnel Informational Page 17

GWD-Perf-8-2 A SimpleXML Producer-ConsumerProtocol June62001

</xsd:element>
</xsd:sequence>

_Jxsd:complexType>
<xsd:element name='EventParameters" type='gfperf-param:EventParametersType" abstract='true'>

<xsd:annotation>
<xsd:documentation>The basic input parameters element that should be

extended.</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name="UptimeCPULoad" type='gfpeff-param:EventParametersType" substitutionGroup='gfperf-
param: EventParameters'>

<xsd:annotation>
<xsd:documentation>The parameters that can be passed to a producer when requestiong an

UptimeCPULoad event.</xsd:documentation>
</xsd:annotation>

</xsd:element>

<xsd:element name="Ping" substitutionGroup='gfperf-param:EventParameters">
<xsd:annotation>

<xsd:documentation>The parameters that can be passed to a producer of Ping
events.</xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base='gfperf-param:EventParametersType'>
<xsd:sequence>

<xsd:element name='TargetHostName" type='xsd:string'/>
</xsd:sequence>

</xsd:extension>

</xsd:complexC ontent>
</xsd:complexType>

</xsd:element>
</xsd:schema>

A.3. Protocol Schema

<?xml version='1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v3.5 NT (http://www.xmlspy,com) by Jerry C Yan (NASA Ames Reseamh Center) -->
<xsd:schema targetNamespace='http://www.gridforum.org/Performance/prot(_col" xmlns:gfperf-
protocol='http://www.gridforu m.org/Performance/protocol" xmtns:gfperf-
event='http://www, gridforum.org/Performance/events" xmlns:gfperf-
param='http://www.gridforum.org/Performance/parameters" xmlns:xsd='http://www, w3.orgl2000110/XMLSchema"
element FormDefault='qualified" attributeFormDefault="unqualified">

<xsd:import namespace='http://www,gridfor um.org/Performance/events"
schernaLocation ='D:\us er\wwsmit h\GridForum_X M LSchema\events-ns. xsd'/>

<xsd:import namespace="http://www, gridforum.or g/Performance/parameters"
schemaLocation='D:\us er_wwsmit h\GridForum%XM LSchema\par ams-ns.xsd'/>

<xsd:complexType name=-'Request'>
<xsd:annotation>

<xsd:documentation>The basic template for a request message.</xsd:documentation>
</xsd:annotation>
<xsd:attribute name='requestlD" type='xsd:integer" use='reduired'/>

</xsd:complexType>
<xsd:complexType name="Reply'>

<xsd:annotation>
<xsd:documentation>The basic template for a reply message.</xsd:documentation>

</xsd:annotation>

<xsd:sequence>
<xsd:element name="Return" type="xsd:string'/>
<xsd:element name="ReturnDetail" type="xsd:string" minOccurs="O"/>

</xsd:sequence>
<xsd:attribute name='requestlD" type="xsd:integer" use='required'/>

</xsd:cornplexType>
<xsd:element name='SubscribeRequest'>

<xsd:annotation>

Smith, Gunter, and Quesnel Informational Page 18

GWD-Perf-8-2 A Simple XML Producer-Consumer Protocol June 6 2001

<xsd:documentation>A message to request a subscription.</xsd:documentation>
</xsd: annotation>
<xsd:complexType>

<xsd:cornplexCont ent> .
<xsd:extension base=-"gfperf-protocol: Request ">

<xsd:sequence>
<xsd:elernent name='SubscriptionlD" type="xsd:integer'/>
<xsd:element ref="gfperf-pararn: Event Parameters"I>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:element narne="SubscribeReply'>

<xsd:annotation>
<xsd:documentation>A reply message to a subscription request.cJxsd:documentation>

</xsd: annotation>

<xsd:complexType>
<xsd:cornplexContent>

<xsd:extension bas e= "gfperf-p¢otocol: Reply'>
<xsd:sequence>

<xsd:element name=*SubscriptionlD" type='xsd:string" minOccurs="0"/>
</xsd:sequence>

</xsd:extension>

</xsd:cornplexContent>
</xsd:cornplexType>

</xsd: element>

<xsd:element ham e="UnsubscribeRequest">
<xsd:annotation>

<xsd:docurnentation>A message to request that a subscription be cancetled.</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:complexContent>
<xsd:extension base="gfperf-protocol: Request">

<xsd:sequence>
<xsd:elernent name='SubscriptionlD" type='xsd:integer'/>

</xsd:sequence>
</xsd:extension>

</xsd:corn plexC ontent>
</xsd:cornplexType>

</xsd:elemant>
<xsd:eternent narne="UnsubscribeReply" type='gfperf-protocol:Reply'>

<xsd:annotation >

<xsd:documentation>A reply messageto an unsubscribe message.cJxsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:eternent name='Event">

<xsd:annotation>
<xsd:docurnentation>A message containing an event that a producer sends to a

consumer. </xsd:docurnentation>
</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:etement name="Error" type="xsd:string" minOccurs="0"/>
<xsd:element narne="ErrorDetail" type='xsd:string" minOccurs="0"/>
<xsd:element ref="gfperf- event: Event "/>

</xsd:sequence>
<xsd:attribute name="subscriptionlD" type="xsd:string" use="required'/>

</xsd:complexType>
</xsd:elernent>

<xsd:element name="QueryRequest">
<xsd:annotation>

<xsd:docurnentation>A message querying for an event.</xsd:docurnentation>
</xsd:annotation>

Smith, Gunter, and Quesnel Informational Page 19

GWD-Perf-8-2 A SimpleXML Producer-ConsumerProtocol June62001

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base= "gfperf- protocol: Request ">
<xsd:sequence>

<xsd:element ref="gfperf-param:EventParameters'I>
</xsd:sequence>

</xsd:extens ion>
</xsd:com plexCont ent>

</xsd:complexType>
</xsd: element>
<xsd:element name=-'QueryReply">

<xsd:annotation>

<xsd:documentation>A query reply message that contains an event.</xsd:clocumentation>
</xsd:annotation>

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base='gfperf-protocot: Reply'>
<xsd:sequence>

<xsd:etement ref='gfperf-event:Event'/>
</xsd:sequence>

</xsd:extension>
</xsd:complexC ont ent>

</xsd:ccmplexType>
</xsd:etement>
<xsd:element name=*EventNamesRequest" type='gfperf-protocol:Request'>

<xsd:annotation>
<xsd:documentation>A message sent from consumer to producer that requests information about

provided message types.</xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name=" EventNamesReply'>

<xsd:annotation>
<xsd:documentation>A reply to an available events message that contains information about events

provided by the producer.</xsd:documentation>
</xsd:annotation>

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base='gfperf-protocol: Reply'>
<xsd:sequence>

<xsd:element name='Event" minOccurs='O" maxOccurs='unbounded'>
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:string'>

<xsd:attribute name='eventns" type='xsd:string* use=-'required'I>
<xsd:attribute name='paramns" type=-'xsd:string" use=-'required'l>

</)¢sd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

_4xsd:sequence>
</xsd:extension>

</xsd:complexContenl>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Smith, Gunter, and Quesnel Informational Page 20

